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Self-similar fluctuation and large deviation statistics in the shell model of turbulence
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Both static and dynamic multiscalings of fluctuations of energy flux and energy dissipation rate in the
Gledzer-Ohkitani-Yamada~GOY! shell model of turbulence are numerically investigated. We compute the
large deviation rate function of energy flux not only in the inertial range~IR! but also around the crossover
between the inertial range and the dissipation range~DR!. The rate function in IR exists to be concave, which
assures the applicability of the Legendre transformation with the anomalous scaling exponents that have been
investigated so far, and turns out to be independent of the Reynolds number. On the contrary, near the
crossover scale, an intermediate dissipation range~IMDR! scaling is observed with the rate function in IMDR,
which is accounted with the argument on dissipation scale fluctuation dominated by the energy flux fluctuation
in the inertial range. Furthermore, to study the difference between IR intermittency and DR intermittency, we
compute finite time-averaged quantities of energy flux and energy dissipation rate and investigate their multi-
scaling behavior. The difference observed in terms of their dynamic multiscaling is discussed.

DOI: 10.1103/PhysRevE.64.056304 PACS number~s!: 47.27.Gs, 02.50.2r, 05.40.2a, 47.27.Jv
ed
fe

o-
m

tio

b
it

i-

ar

tio
no

ul
t t
-
-

he
en

fe

and

the

c-
e
ale
rge

g-

me

eri-
d

age,
s

n
ni-

o-
of
OY
tur-
ux.
ge
dy-
I. INTRODUCTION

One of the most important problems in fully develop
turbulence is the small-scale statistics of the energy trans
The energy injected at the large-scaleL transfers down to the
dissipation scaleh where the energy is dissipated into m
lecular motion due to viscosity. Universal statistics free fro
the viscous effect as well as mechanisms of energy injec
is expected to hold in the range of length scaleh! l !L, the
so-called inertial range, provided that the Reynolds num
is sufficiently large. In the inertial range, moments of su
able observables defined over the scalel show power-law
dependence onl. In particular, the two quantities , the long
tudinal velocity differencedv l[@v(x1 l)2v(x)#• l/ l and the
locally averaged energy dissipation ratee l averaged over a
region of scalel, are mainly measured. These quantities
characterized by the scaling exponentsz(q) and t(q) de-
fined as

^udv l uq&;V0
qS l

L D z(q)

, ^e l
q&;e0

qS l

L D t(q)

, ~1.1!

where ^•& is the ensemble average , andV0 and e0(5eL)
represent the characteristic velocity and energy dissipa
rate at scaleL, respectively, which are assumed to exhibit
relevant fluctuation. From the definition~1.1!, one finds that
z(q) andt(q) are convex functions ofq.

In the Kolmogorov 1941~K41! theory@1# it was supposed
that relevant parameter on the small-scale statistics in f
developed turbulence is the energy-transfer rate and tha
scaling exponentzK41(q)5q/3 was predicted via dimen
sional argument. However,z(q) by experimental measure
ment deviates from the K41 law, especially for largeq @2#.
This is called the anomalous scaling. The origin of t
anomalous scaling is believed to be a strong intermitt
fluctuation of the energy-transfer rate. To determinez(q) is
thus called the intermittency problem. The energy-trans
1063-651X/2001/64~5!/056304~13!/$20.00 64 0563
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rate was treated as the constant parameter in K41 theory,
is expressed as the constant energy dissipation ratee l . The
fluctuating energy-transfer rate can give the correction to
K41 scaling.

It is important to know the nature of energy-transfer flu
tuation at scalel to study the intermittency problem. On
relevant quantity is the energy flux. The energy flux at sc
l represents the rate of nonlinear energy transfer from la
to small scales per unit time through the scalel. Physically,
the locally averaged energy dissipation ratee l may be
thought to be equivalent to the energy flux. In the Kolmo
orov 1962 theory~K62!, the fluctuations ofe l and the energy
flux at a scalel were assumed to be fundamentally the sa
@3# in connection with the refined similarity hypothesis

dul; l 1/3e l
1/3. ~1.2!

The combination of Eqs.~1.1! and ~1.2! thus immediately
leads to

z~q!5q/31t~q/3!. ~1.3!

Theqth intermittency exponentt(q) defined in Eq.~1.1! has
been extensively investigated both numerically and exp
mentally @4–6#. The energy flux and the locally average
energy dissipation rate are almost equal on the aver
whereas it is nota priori known that their fluctuation nature
are rigorously the same.

In this paper, we will discuss the intermittent fluctuatio
of the energy-transfer process of the Gledzer-Ohkita
Yamada ~GOY! shell model @7# by use of the large
deviation-rate function, discussing overall statistics of exp
nent fluctuation relevant to the similarity characteristics
the energy-transfer process. We numerically solve the G
shell model of the dynamical energy-cascade model of
bulence and compute the rate function of the energy fl
Moreover, we compare the fluctuations of the inertial ran
energy flux and the energy dissipation rate about their
namic scaling.
©2001 The American Physical Society04-1
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In Sec. II, we develop the rate-function formalism to ch
acterize the intermittency utilizing the large deviation theo
In Sec. III, we determine the rate function of the energy fl
of the GOY model, numerically solving the dynamical equ
tion for shell variables. It will turn out that in the inertia
range, the rate function characterizes the energy-flux in
mittency and near the dissipation scale it obeys differ
scaling than the inertial range by the effect of viscosity.
Sec. IV, we propose an approach to characterize the temp
fluctuation of the energy flux and energy dissipation rate
observing the statistics of their finite time averages. It will
found that the moments of their finite time averages ob
power-law scaling, and then we discuss the difference
tween energy flux and energy dissipation observed in
scaling-exponent fluctuation. In Sec. V, one finds conclud
remarks.

II. RATE-FUNCTION FORMALISM OF INTERMITTENCY

In this section, we review the rate-function formalism
characterize the intermittent statistics of energy transfer.
basic ideas are~1! the self-similarity hypothesis on fluctua
tions of different scales introduced first in the Kolmogor
1962 ~K62! theory @3#, ~2! the treatment of intermitten
strong fluctuation by the large deviation theory~LDT! ap-
plied to the fluctuation of exponents of energy trans
@8–10,13#.

For the locally averaged energy dissipation rate,en[e l n

5* ur u, l n
e(x1r )dr / l n

3 , with the scalel n5Ll2n, (l.1), the

local scaling exponentzn is introduced throughen11 /en
5lzn. The fluctuation ofen is expressed using the the fini
average ofzn , z̄n5( j 50

n21zj /n

en5e0lnz̄n5e0S L

l n
D z̄n

. ~2.1!

One may assume thate0 is constant since the fluctuation o
the energy-dissipation rate at the largest scaleL may be neg-
ligible compared to that at small scales. The self similarity
the fluctuation ofen at each scale implys that the statistics
zn is independent ofn. For n sufficiently larger than the
correlation step ofzj , LDT @8,11# may be applied to the
probability density function ~PDF! of z̄n , Qn(z)
5^d( z̄n2z)&, that its asymptotic form takesQn(z)
;An expl@2S(z)n#, where expl(x) denoteslx. Here, the
functionS(z), being independent ofn, is called the rate func-
tion, Crame´r function @8#, or the fluctuation spectrum@11#,
and characterizes the asymptotic form of PDF forz̄n fluctua-
tion. Ergodicity assumption ofzn requires thatS(z) is con-
cave and takes the minimum zero at^z&. With the use of
PDF Qn(z) for z̄n , PDF for en is given by

Pl n
~e!;

e21

Aln~L/ l n!
expL/ l nF2SS logL/ l nS e

eL
D D G . ~2.2!

In the above consideration,S(z) is a fundamental function in
describing the self-similar energy cascade, and we ex
05630
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that these functions are universal characterizing the ene
cascade statistics in the inertial range in fully developed
bulence.

Next, the moments ofen are obtained as

^en
q&[E

0

`

eqPl n
~e!de}E

2`

`

expl@2n~S~z!2qz!#dz.

~2.3!

The integral is evaluated by the steepest descent metho
largen by supposingS9(z).0, which lead to

t~q!5min
z

@S~z!2qz#. ~2.4!

Thus t(q) is related to the rate functionS(z) via the Leg-
endre transformation. Equation~2.4! yields

t~q!5S„z~q!…2qz~q!, ~2.5!

q5
dS„z~q!…

dz
, ~2.6!

z~q!52
dt~q!

dq
. ~2.7!

For the characterization of intermittent energy-transfer sta
tics, theqth order moment ofen gives the information of the
fluctuation of z. Small z describes a weak fluctuation an
strong intermittency is characterized by largez. The func-
tional form ofS(z) is directly related to probabilities of vari
ous intermittent events of turbulent field and describes
overall features of intermittent fluctuation.

Let us here add a comment on estimating the maxim
degree of order of moments^en

q& using the rate function. One
always has a finite amount of data. This fact causes the p
lem of statistical convergence of moments^en

q&. The mo-
ments with largeq are determined mainly by the right tail o
PDF Pl n

(e) where the statistical accuracy is not sufficie
enough. This implies that there exists a characteristic va
qmax of q, for q smaller thanqmax the statistical convergenc
of the moments is enough, but it is not sufficient forq larger
than qmax. The characteristic valueqmax may be evaluated
as follows. Lete* be the boundary that separates the ac
racy of the statistical convergence of PDF, i.e., PDF becom
unresolved ate* as e is increased. The moments^en

q& for
sufficiently largeq are approximately proportional toe

*
q .

This means thatt(q) does linearly depends onq. The
q-linear dependence oft(q) thus results from the existenc
of the cutoff e* . By defining the characteristic expone
zmax by e* /e05lnzmax, qmax is evaluated by the solution o
z(qmax)5zmax, where the functionz(q) is the same as de
fined in Eq. ~2.7! for q<qmax. The present estimation o
qmax is alternative to the conventional one@2,12# whereqmax
is estimated by checking that theeqPl n

(e) curve has a dis-

cernible peak and decays sufficiently fast ase is increased.
The rate function provides another way to estimateqmax.
4-2
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SELF-SIMILAR FLUCTUATION AND LARGE . . . PHYSICAL REVIEW E 64 056304
Calculatingq(z) using Eq.~2.6!, one may conveniently find
qmax as the converged maximalq(z). This data processing i
achieved since the rate function directly describes the na
of the large fluctuation.

Let us turn to the discussion of the shape ofS(z). The
central limit theorem~CLT! states thatS(z) parabolically
depends onz near its minimum atz5^z&@5z(0)#, thus, the
K62 log-normal description may be correct near the mi
mum region ofS(z). However, beyond the range of the a
plication of CLT, there is no reason forS(z) to have a para-
bolic form that is a strong assumption used in K62 theo
Then one’s interest goes to the determination of the shap
S(z) in the range of large deviation from mean^z&, i.e., of
z(q) for large uqu.

Hereafter, to analyze the intermittent energy-transfer
tistics, we use a shell model for energy cascade of tur
lence. Various types of shell models are so-far propo
@14#. We take here the so-called GOY model@7# and directly
calculateS(z) of energy flux by numerically integrating th
dynamical equation and compare the results with theorie
far proposed.

III. SELF-SIMILAR FLUCTUATIONS OF ENERGY-FLUX
STRUCTURE FUNCTIONS

The GOY model@7# is written as

dun

dt
5 iknS un11* un12* 2

1

4
un21* un11* 2

1

8
un21* un22* D

2nkn
2un1dn,4f . ~3.1!

Here, kn5k0ln (n51, . . . ,N) is the geometrically space
wave number,k0(5L21) being taken as the smallest, cha
acteristic wave number andun is a single complex variable
of the shell-numbern corresponding to the wave-numberkn ;
n is the kinematic viscosity andf is a constant forcing re
stricted on the fourth shell. Forn5 f 50, the model con-
serves the total-energyE5(n51

N uunu2/2. The parameters
(n,N) are chosen in a way the inertial range is well resolv
As reported in Refs.@7,14,15#, the model displays intermit
tent dynamics and the velocity structure-function expon
z(q) defined by^uunuq&;kn

2z(q) in the inertial range shows
anomalous scaling, i.e., the scaling exponent is differ
from the K41 scaling law.

The energy equation in the GOY model takes the form

d

dt

uunu2

2
52nkn

2uunu21Re@ f un* dn,4#1Fn212Fn ,

~3.2!

where

Fn52kn ImFunun11un121
1

4
un21unun11G ~3.3!

is the energy flux from thenth shell to the (n11)-th shell
that represents the nonlinear energy transfer on scale 1kn .
Summing up Eq.~3.2! in terms of shell indices gives
05630
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dt
E52e1Re@ f u4* #, ~3.4!

e5n (
n51

N

kn
2uunu2. ~3.5!

The total energyE is thus dissipated at the ratee.
In the K62 theory, the fluctuation of energy flux at a sca

l 51/k is assumed to be the same as that ofe l , which corre-
sponds, in the present case, toen;uFnu. In the GOY model,
one may treat the energy-fluxFn at a scale 1/kn , one need
not use the energy dissipation ratee. By concerning the in-
ertial range intermittency of the energy cascade,Fn has a
clear physical meaning rather thanun , therefore, hereafte
we investigate the rate function for the energy-fluxFn . In
the inertial range scale, we expect that the power-law

^uFnuq&;kn
2t(q) ~3.6!

andz(q)5q/31t(q/3) is established because of the scali
relation uFnu;knuunu3.

Hereafter, the rate function for the energy-fluxFn is cal-
culated in two different ranges:~Sec. III A! the inertial range,
where the long-time average ofFn is almost constant.;~Sec.
III B ! the intermediate dissipation range, which is near
crossover between the inertial and the dissipation ranges
though in the scale where the inertial range scaling gradu
breaks, the multifractal phenomenology predicts that stro
singularity associated with highly intermittent behavior s
holds the inertial range scaling@16#.

A. Inertial range case

In this section, we consider the intermittent fluctuation
the energy-fluxFn in the inertial range. Without loss of gen
erality, we putl52, and calculate the rate functionS(z) of
uFnu, which is numerically estimated from the PDFQn(z) of

z̄n5 log
uFnu

^uFnu&Y log
kn

k0
5~ loguFnu2 log^uFnu&!/nlog2

by

Sn~z!52
1

n log 2
log@Qn~z!/Qn

M#, ~3.7!

Qn
M5max

z
Q~z!. ~3.8!

Qn(z) is normalized byQn
M in such a way thatS(z) has the

minimum zero. For sufficiently largen, Sn(z) tends toS(z),
which is independent ofn, and the value ofz giving the
minimum of S(z) is equivalent to the long-time averag
value ^z& of z̄n . However, we expect that due to the finit
ness ofn, the z value giving the maximum ofQn(z) is not
equal to the mean valuêz&. Thus, for large but finiten, ^z&
is numerically determined by assuming^ loguFnu&5^z&n log 2
1o(n). Then the functionS(z) is estimated by slightly shift-
ing Sn(z) along the abscissa so that the zero point is loca
4-3
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NAKAYAMA, WATANABE, AND FUJISAKA PHYSICAL REVIEW E 64 056304
at ^z&. One should note that in terms ofS(z), the PDF for
uFnu is asymptotically given by

P~ uFnu!5
Qn

MuFnu21

Aln~kn /k0!
expkn /k0F2SS ln~ uFnu/^uFnu&!

ln~kn /k0! D G .
~3.9!

For the numerical integration of Eq.~3.1!, the slaved-frog
second-order Adams-Bashforth scheme@14,17# is used. The
time incrementDt is chosen as follows. First, we carried o
a preliminary calculation of characteristic time scales ass
ated with shells of wave-numberskn’s using the fourth-order
Runge-Kutta scheme. Next, we choose the time increm
for the slaved scheme. The slaved scheme treats the li
term exactly and discretizes the nonlinear term integrat
In the GOY model, there are two different characteristic tim
scales in each shell. One is the linear damping time s
(nkn

2)21 and the other is due to the nonlinear term. Fo
high shell-moden, the linear damping is dominant sincenkn

2

is large. In the inertial range, on the contrary, the nonlin
term dominates the dynamics and linear damping is wea
contributed. To trace the dynamics of an inertial range sh
one must chooseDt at least smaller than the smallest inert
range time scale. A nonlinear time scale numerically e
mated is shown in Fig. 1. Figure 1 gives the guideline
choose the integration time incrementDt, which is chosen
sufficiently small in comparison with the smallest time sc
among all shell modes. Thus, the energy-flux dynamics
the inertial range may be well traced as well as the ene
dissipation rate dynamics. The parameters for numerical
culations are chosen ask05224 and f 55.0(11 i )31023

FIG. 1. Nonlinear time scales estimated astNL(n)

5A^uun /(u̇n)NLu2& for different runs, where (u̇n)NL is the nonlinear
term in Eq.~3.1!. The solid line shows the slope22/3. The dash-
dotted line shows the linear damping time scale for run 4.
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with the total shell numberN519, n51026 ~run 1!, N
522, n51027 ~run 2!, N524, n51028 ~run 3! and N
527, n51029 ~run 4!.

In Fig. 2, we show the long-time average ofuFnu. One
may recognize the existence of the inertial range wh
^uFnu& is almost a constant irrespective ofn. In Fig. 3, we
show typical time series ofFn(t) in the inertial range shells
n515,17,19 for run 4. One observes episodes of strong fl
tuations in quiescent laminar phases, which represent in
mittent energy-cascade transfer from large to small sca
Furthermore, one sees that the intensity of intermittent fl
tuation becomes stronger in high wave-number shells. T
figure suggests the existence of characteristics of the en
flux.

Figure 4 shows the rate function obtained by measur
Qn(z) for the energy-flux fluctuation for shells correspon
ing to the inertial range in run 4. One finds thatSn(z) for
different shell numbers are on the same curve. The conv
ing function is the rate functionS(z). It is expected thatS(z)
is the universal function characterizing the intermitte
energy-cascade dynamics and is the same as in Eq.~2.2!. It
should be noted that the observedS(z) is concave in its wide
region. This concavity property guarantees the applicabi
of the Legendre transformation Eq.~2.4!, which connects
S(z) and theqth intermittency exponentt(q).

Let us make a remark on the shape ofS(z) on the left side
where S(z) approximately takes the formS(z)52a(z
2zm) with constantsa andzm . Inserting this into Eq.~3.9!,
one finds that the PDF ofuFnu is represented asP(uFnu)
;uFnua21 in this region. The numerical result shows thata is
about unity, which implies that PDF ofuFnu is finite near
uFnu50. This fact may be due to the existence of the inve
energy-cascade process, which means thatFn may become
negative in some times. This nature is quite different fro

FIG. 2. Time averages of the moduli of energy fluxes for diffe
ent runs.
4-4
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SELF-SIMILAR FLUCTUATION AND LARGE . . . PHYSICAL REVIEW E 64 056304
that of the energy dissipation rate which is a positive defin
variable. So we expect thatS(z) for the energy dissipation
rate takes different forms in its left branch than that of t
present case. Let us consider the effect of this shape of
near the originuFnu50 on moments ofuFnu. The contribu-
tion from the range@0,d# to moments is estimated as

^uFnuq&d;E
0

d
xa21xqdx, ~3.10!

for d!1. This expression diverges forq,2a and converges
for q.2a in the limit d→0, which means that moments o
uFnu exist for q.2a and t(q) have its support inq.2a.
This fact is easily recognized by noticing Eq.~2.6!. The
lower bound of the derivative ofS(z) is thusa52qmin .

FIG. 3. Typical time evolutions of energy fluxes in the inert
range~a! n515, ~b! 17, and in the intermediate dissipation range~c!
n519, and of the energy dissipation rate~d! for run 4.
05630
e
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In Fig. 4, we also show the comparison with some the
retical results based on different theoretical models. T
CLT states thatS(z) around its minimum takes the parabol
form

S~z!'
1

u2t9~0!u
@z2z~0!#2. ~3.11!

This gives the Gaussian form near the minimum ofS(z).
Equivalently, we obtaint(q)5t8(0)q11/2t9(0)q2. This
approximation is valid only in the region where CLT is a
plicable, i.e., for appropriately smalluqu. S(z) is well fitted
by this approximation aroundz(0), but generally deviates
from Eq. ~3.11! for a largeuz2^z&u region. This in general
requires other statistics instead of the Gaussian statistics
strong, as well as weak fluctuations ofz. Once one applies
the form Eq.~3.11! to the whole region ofz, the relation
z(0)5t9(0)/2 is required byt(1)50 and this approxima-
tion is identical to the K62 log-normal model. In the K6
model, the intermittency exponent is given bym52t9(0)
52t(2), which is the only parameter characterizingS(z) as
well as t(q)52(m/2)q(q21). In general, there is no rea
son to connectz(0) and2t9(0). The log-normal approxi-
mation can thus be applied to the fluctuation statist
around z(0). One should be cautious that when definin
m52t(2), not 2t9(0), the K62log-normal model should
be fitted aroundz(2) but not z(0). The present numerica
study shown in Fig. 4 givesz(0)5^z&520.28 and
2t9(0)/251/@2S9(^z&)#50.30. The observed values a
apparently different from the prediction of K62. It should b

FIG. 4. Rate functions of energy flux in shells in the inert
range for run 4. The Legendre transformation of the She-Le´vêque
model ~log-Poisson model! @Eq. ~3.13!# with g50.625 andd0

51.48, and the Gaussian approximation@Eq. ~3.11!# are drawn for
comparison. The straight line shows slope21.
4-5
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NAKAYAMA, WATANABE, AND FUJISAKA PHYSICAL REVIEW E 64 056304
noted that the log-normal approximation is valid for m
ments with q satisfying uz(q)2^z&u&Aut9(0)u. In the
present case, this region is about 0<q&1.

Next, we compare the numerical results to the pheno
enological model by She and Le´vêque~SL! @18#. This model
is known to fit well the experimentalz(q) andt(q) for large
q and so do the result of the GOY model@5,14,19#. The
random cascade model~2.1! with the specific Poisson statis
tics on zn yields the SL model, and the SL model is th
recognized as the log-Poisson model@20#. Theqth intermit-
tency exponent by the SL model and the rate function
obtained as

tSL~q!52gq1d0~12bq!, d05
g

12b
, ~3.12!

SSL~z!5
z2g

ln b F lnS z2g

d0 ln b D21G1d0 , ~3.13!

0,g<3, g<d0 .

g and d0 are the same asz(`) and S@z(`)#, respectively.
The SL model is parametrized at the pointz(q→`) that is of
the strongest fluctuation, which means that the SL mo
should be compared witht(q) in largeq region or withS(z)
for z.^z& region. A largeq picks out the strong intermitten
fluctuation statistics. For the intermittency of the GO
model, these two parameters are numerically obtained
Lévêque and She@19# as g50.625 andd051.48 by using
Eq. ~3.12!. The comparison ofSSL(z) with these paramete
values with the present numerical result is made in Fig
One may find a good agreement in the right region ofS(z),
where strong fluctuation is dominant, but not in the left
gion of weak fluctuation. One observes thatz(q) of large-q
fluctuation coincides well with the SL model. This fact ma
be seen as a natural result since the SL model is regarde
the model explaining the strongest fluctuation and someh
extrapolates to the region nearz(q50)5^z& point, which
was discussed in Ref.@21#. The SL model thus captures
strong fluctuation nature of intermittency in turbulence an
cannot be applicable for weak fluctuation. This feature of
SL model agrees with the result of direct numerical simu
tion of the Navier-Stokes equation@6# and the data analysi
of real turbulent flow@5#.

The inertial range intermittency is considered to be u
versal for turbulence at sufficiently large Reynolds num
Re. In Fig. 5, we show converged rate functions for differe
runs in their inertial ranges. The results clearly show t
converged rate functions are independent of Re.

We discuss some important quantities characterizing
universal statistics of intermittency in fully developed turb
lence from the LDT viewpoint.S(z) may be a universa
function for a sufficiently large Reynolds number. The sha
of S(z) around the minimum is characterized by the tw
parametersz(0) andt9(0), which is an immediate result o
the CLT. If S(z) is well defined for Re→`, z(0) andt9(0)
are important quantities concerning small fluctuation arou
z(0), anddetermine smalluqu behaviors ofz(q) or t(q).
The intermittency exponentm is well known as a universa
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quantity characterizing intermittency. However, there is
particular reason thatm has a special role from the LDT
viewpoint. Instead,z(0) andt9(0) are more important than
m to investigate the universal statistics of intermittency
turbulence.

Concerning large fluctuation, the SL model yields a go
approximation of the observedS(z). The SL model generally
contains two parameters, i.e.,g and d0 in Eq. ~3.13!. As
stated above, these parameters determine the asymptoti
S(z) near the largestz, i.e., the right edge of theS(z) curve.
They have great importance to characterize large fluctua
statistics. However, it is difficult to evaluate these parame
from experimental data because the amount of experime
data is always finite and the maximal value ofz is just a
maximum of sample data. On the other hand, one may c
struct a model of intermittency without the upper cutoff ofz.
The K62 log-normal model is an example of this kind. T
possibility of the existence ofg andd0 may be discussed a
follows. As far as concerning energy dissipation multifrac
in real turbulence, the exponentz is bounded, which is ar-
gued by the Novikov inequality@8,22#

t~q!>23q for ~q>0!, t~q!<23q for ~q<0!.
~3.14!

This may give the largeq asymptotic oft(q) as

t~q!52gq1o~q!, q→`, ~3.15!

thus, z(q)52t8(q) is bounded byg @21#. For the GOY
model, Lévêque and She@19# have done a detailed numeric
measurement on the inertial range statistics of the mod
of Pn5(un21unun11)1/3, and found there exists a maximum
for the fluctuation of ofPn . These facts on real turbulenc

FIG. 5. Rate functions of the energy flux in the inertial range
different Reynolds numbers,n511 for run 1, 14 for run 2, 16 for
run 3, and 18 for run 4.
4-6
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and the GOY model suggest that to knowg andd0 is quite
important to treat large fluctuation on inertial range statist

B. Intermediate dissipation range case

In this section, we focus on the self-similarity around t
crossover between the inertial and the dissipation range
this crossover range, a scaling law different from that in
inertial range is observed as is predicted by the multifra
in the inertial range. This scale range is called as the in
mediate dissipation range@16#.

The key idea of the intermediate dissipation range is
fluctuation of the viscous cut-off scale and to relate it w
the inertial range scaling. In the K41 theory, the visco
cutoff wave number is uniquely defined askd5(e0 /n3)1/4,
so that the corresponding local Reynolds number is of or
one. At this characteristic wave number, the dissipation st
to dominate. For wave-numberk smaller thankd , the inertial
range scaling holds. On the other hand, in the multifrac
description, the viscous cutoff is a fluctuating quantity due
a fluctuating energy transfer@16,23#. If we define the local
Reynolds number by the energy transfer quantityen at the
scale 1/kn as

Ren5
en

1/3

kn
4/3n

, ~3.16!

en being characterized by the local scaling exponentz as
en;e0(kn /k0)z @Eq. ~2.1!#, then one may estimate th
z-dependent viscous cutoffkd(z) from Eq. ~3.16! with Ren
;1 as

kd~z!

k0
;H S e0

k0
4D 1/3

1

nJ 3/(42z)

;Re0
3/(42z)5Re3/(42z).

~3.17!

In a fully developed turbulence (Re@1), a largerz gives a
smaller cutoff scale 1/kd(z). This implies that the width of
the inertial range scaling ofz(q) fluctuation is wider for
largerz(q); a higher-order structure function holds the ine
tial range scaling down to a smaller scale. In the languag
the rate functionSn(z) at those scales where the viscos
begins to affect, the shape ofSn(z) starts to decline for smal
z. For largez of strong fluctuation, the shape ofSn(z) is
expected to still reserve as the inertial range shape. T
scale range is the intermediate dissipation range.

We are interested in how the characteristic functionSn(z)
in this crossover range differs from the inertial range r
functionS(z), i.e., howSn(z) depends onn in this range. In
the GOY model, this crossover range is located around
shell of the K41 viscous cutoff wave-numberkh51/h. The
shell number corresponding tokh is estimated askh
5(e0 /n3)1/4[k02nd. Thend’s for the present runs are sum
marized in Table I. It is seen in Fig. 2 that thesend’s are
approximately equal to the end of the inertial range. W
compute the rate functionSn(z) for shells aroundnd , which
should have then dependence and differ fromS(z) in the
inertial range.
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The prescription to estimateSn(z) is applied to shells
with wave numbers higher than those of the inertial range
Fig. 6, we show the result for run 4. Compared with t
inertial rangeS(z), one finds theSn(z) curve coincides par-
tially with the inertial rangeS(z) in a largez region but
differs than that for smallz. This result agrees with the abov
discussion based on the multifractal description. In t
crossover range, the inertial range scaling holds for la
fluctuation ofFn but not for smallFn because of the viscou
effect. This scaling is different from that of the inertial rang
and is characteristic of the intermediate dissipation ran
The intermediate dissipation range scaling is qualitativ
characterized by observing howSn(z) depends on the she
numbern. The left wing slope ofSn(z) becomes looser asn
is larger, which means the probability of laminar state b
comes larger and the energy flux is more intermittent than
the inertial range.

Thez-dependent cutoffkd(z) is determined by Eq.~3.17!.
We will estimate the inverse function ofkd(z), denoting
zkn

5zn , utilizing the characteristic functionSn(z) in the in-
termediate dissipation range of the data of Fig. 6. By supp
ing z is distributed over@zmin ,zmax#, the intermediate dissi-
pation range ranges overkd(zmin),k,kd(zmax). For k5kn
in this range, 1/kn is a cutoff scale forzn fluctuation andzn is

TABLE I. Kolmogorov dissipation shell numbersnd

; 1
4 log2(e0 /n3), D value in Eq.~3.20!, and log2 Re. e0 is order of

1023 for all runs.

Run 1 Run 2 Run 3 Run 4

nd 12.5 14.9 17.4 19.9
D 0.94 0.97 0.97 0.96
log2 Re 21.95 25.39 28.73 31.89

FIG. 6. Rate functionsSn(z) of energy flux in the intermediate
dissipation rangen518, . . . ,23 for run 4.
4-7
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NAKAYAMA, WATANABE, AND FUJISAKA PHYSICAL REVIEW E 64 056304
identified with the smallestz where Sn(z) coincides with
S(z). The zn can be determined by comparingSn(z) and
S(z). In the intermediate dissipation range, the quan
n(kn /k0)(42zn)/35n2cn from Eq. ~3.17! should become the
same order irrespective ofn, wherekn5k02n and

cn[n
42zn

3
. ~3.18!

We require that the exponentcn is independent ofn in the
intermediate dissipation range. Then dependence ofzn is
determined from Eq.~3.18! with cn5c as

zn542
3c

n
. ~3.19!

How is the exponentc determined? From Eq.~3.17!, c is
determined by Re of the mean energy dissipation ratee0 as

c5D log2 Re, ~3.20!

whereD is the coefficient of order one expected to be co
stant for high Re.

We determinezn from the data shown in Fig. 6, and the
plot zn in Fig. 7. In Fig. 7,zn is fitted to Eq.~3.19! by the
least mean-square method. The numerical values ofzn’s are
determined from data as the points at which the differe
d(z)5S(z)2Sn(z) crosses a given thresholdd. We regard
Sn(z) coincides withS(z) if d(z),d, and does not other
wise. The form~3.19! with a single parameterc5cd , cd
being the value ofc for a givend, seems to fit the data wel
For reference, the value ofcd for d50.001 for run 4 is 30.54.
The functional form ~3.19! is valid with properly small
thresholdd, the fitting parameterscd’s are insensitive to the
choice ofd as far as it is properly small.

FIG. 7. Viscous cutoff scale exponentzn for different runs. The
inertial range scaling ofzn stops at the correspondingn. Fitting line
@Eq. ~3.19!# for each data is also shown.
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The coefficientD in Eq. ~3.20! for different runs are cal-
culated with the fitting valuecd and Re, and are summarize
in Table I. It turns out thatD is almost constant for runs. Th
values of log2 Re are also shown in Table I for reference.

The results show that in the GOY model, the intermedi
dissipation range scaling holds quite well. Thez dependence
of the viscous cutoffkh(z) is directly observed by use o
Sn(z). The inertial range multifractal leads to multicutoff
This is quite a nature of complexity of turbulence.

In a fully developed turbulence, the cutoff scale is det
mined by the balance between nonlinear and viscous te
In other words, this characteristic scale is determined by
competition between the energy flux and the energy diss
tion. Since the energy flux exhibits strong, intermittent flu
tuations, the cut-off scale also fluctuates. When the ene
flux is active and becomes large, the cutoff scaleh becomes
smaller, and therefore, the inertial motion reaches a sma
scale, but on the contrary and when the energy flux is in
tive and takes small value,h becomes larger. This situatio
may correspond to the case for real turbulent flow beca
the fluctuation is nonuniform spatially and temporally. T
cutoff scaleh thus will exhibit fluctuation according to the
local amplitude of the energy flux, and the intermediate d
sipation range scaling around the Kolmogorov scaleh will
be examined by observing the rate function.

IV. SELF SIMILARITY OF TIME CORRELATORS

In this section, we compare the fluctuation characteris
of the energy flux with those of the energy dissipation ra
An energy flux represents nonlinear energy transfer at a
tain scale. In a fully developed turbulence, its average in
inertial range is almost constant irrespective of the wa
number and takes the same order as the average energ
sipation rate. Thus, the K62 theory assumes that their fl
tuation statistics are fundamentally the same as each o
However, the energy dissipation rate is the quantity char
terizing dissipation range dynamics, and its fluctuation
ture is not exactly the same as the energy flux fluctuation.
compare their fluctuation natures in the GOY model, we w
consider their time averages and study their multiscal
characteristics.

For the energy fluxFn on akn shell and the energy dis
sipation ratee we introduce their finite time averages over
time spant,

uFnu t5
1

t Et0

t01t

uFn~s!uds, e t5
1

t Et0

t01t

e~s!ds. ~4.1!

Depending ont0 , uFnu t ande t are fluctuating quantities. Fo
both quantities, multiscaling behavior is expected to hold
the sense that their moments obey

^uFnu t
q&;t t̃n(q), ^e t

q&;t t̃e(q), ~4.2!

with characteristic functionst̃n(q) and t̃ e(q). This behavior
is recognized as the multifractal characteristic on the ti
axis. The temporal fluctuation is statistically self similar
the sense that temporally coarse-grained variables obey
4-8
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SELF-SIMILAR FLUCTUATION AND LARGE . . . PHYSICAL REVIEW E 64 056304
power laws~4.2! and in general, the scaling exponentst̃n(q)
and t̃ e(q) are nonlinear functions ofq. The same kind of
analysis as the present section has applied to the time s
of a intermittent chaos in Ref.@24#. The time length where
the above scaling behavior is expected to be observe
limited astmin!t!T, wheretmin andT are the smallest and
largest characteristic times where the self similarity in
above sense holds. Averaging overt for t@T yields trivially
the long-time average, and no power-law time depende
exists. The scaling laws as Eq.~4.2! thus hold fort less than
the correlation time scale where the scaling^e(t)e(0)&
;e0

2t t̃e(2) holds. One should notice that the exponent t

characterizes the correlation decay is identical tot̃ e(2) given
in Eq. ~4.2!.

In addition to the scaling exponents in Eq.~4.2!, one may
consider the rate function of time scaling as follows. Let
define the local exponentz̃e and its rate function for the
coarse-grained energy dissipation rate by

e t5e0S T

t D
z̃e

, z̃e5
loge t /e0

logT/t
, ~4.3!

S̃e~ z̃!;2
log Pe,t~ z̃!

logT/t
, ~4.4!

wherePe,t( z̃) is the PDF ofz̃e andT is the largest time scale
of the system. By repeating a similar calculation in Sec.
the concavity assumption onS̃e( z̃) leads to the relation be
tween the time scaling exponent andS̃e(z) for t!T as

t̃ e~q!5min
z

@S̃e~z!2qz#. ~4.5!

Similarly, the rate functionS̃n( z̃) is defined for the coarse
grained energy fluxuFnu t .

To numerically check the power-law scaling of Eq.~4.2!,
the third- and fourth-order moments are shown in Fig. 8
several inertial range energy fluxes and the energy diss
tion rate for illustration. Power-law behavior~4.2! is ob-
served over three decades. For higher shell, scaling reg
tend to be wider in small time scales because the dynam
becomes faster and the inner cutoff time scaletmin becomes
smaller.

The time scaling exponents numerically determined
plotted in Fig. 9. It is difficult to obtain statistical conve
gence of momentŝuFnu t

q& and ^e t
q& for large q(.4). We

discuss the converged data forq,4 in Fig. 9. The data for
4,q,6 in Fig. 9 are computed for another discussion ma
later. By definition,t̃n(q) andt̃ e(q) vanish at bothq50 and
1. Comparingt̃n(q) with t̃ e(q), one finds the difference o
statistics between the inertial range energy flux and the
ergy dissipation rate. In a small-q region, thet̃ e(q) curves
more loosely nearq50 than t̃n(q)’s ~Fig. 10, the magnifi-
cation of a small-q range of Fig. 9!, and in a large-q region
t̃ e(q) goes abovet̃n(q) ~Fig. 9!. To qualify these differences
of temporal fluctuations, we calculated some characteri
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quantities. For a small-q region, the first and second deriva
tives atq50 are important parameters since they determ
the parabolic shapes ofS̃n and S̃e near their minima; one
may make a qualitative comparison with these parame
~see Sec. III A!. They are noted asz̃n(0)52 t̃n8(0) ~similar

to Eq. ~2.7!!, and t̃n9(0), and thecorresponding numerica

values determined by the mean and the variance ofz̃ are

FIG. 8. The third and fourth moments of finite time average
the energy flux in the inertial range and the energy dissipation
for run 4. The third moments are the upper lines and the fou
moments are the lower lines.

FIG. 9. The time scaling exponentst̃n(q) for the energy flux in

the inertial rangen513, 15, 17, 19, andt̃ e(q) for the energy
dissipation rate for run 4. Moments,^uFnu t

q& and ^e t
q&, are con-

verged forq,4.The error bars are given to the data.
4-9
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given in Table II. Thez̃n(0)’s for the energy fluxes take
approximately same values and are larger thanz̃e(0) of the
energy dissipation rate. Moreover, theu t̃n9(0)u ’s take larger

values thanu t̃ e9(0)u. The largeruz̃n(0)u and u t̃n9(0)u make

t̃n(q) more tightly curving aroundq50. This is a qualitative
difference of the small fluctuation between the energy fl
and the energy dissipation rate fluctuations.

The behavior of characteristic functionst̃n and t̃ e for q
→` is dominated by the strongest fluctuation in sample d
its corresponding exponentz being denoted asg(5zmax de-
fined in Sec. II!. g values foruFnu t and e t may be possibly
determined as the intrinsic values of their fluctuations, or
the maximum order of events in finite sample data. Mo
over,q(g) (5qmax defined in Sec. II! is the maximum value
of q of the convergence of moments. Whenever exponent
moments such ast(q) are computed forq.q(g), one al-
ways observes the linearq dependence of a scaling expone
in a large-q region~cf. Sec. II!. In this q region,t(q) relates
with S(z) ast(q)52gq1S(g), g andS(g) are constants

FIG. 10. Same data oft̃n(q) and t̃ e(q) as in Fig. 9 shown in a
smaller range ofq values. Even in a small-q range, the statistics o
the energy flux and the energy dissipation rate differ from e
other.

TABLE II. Characteristic parameters for the time scaling of t
energy flux in the inertial range and the energy dissipation rate
run 4.

n z̃n(0),z̃e(0) u t̃n9(0)u,u t̃ e9(0)u g̃n ,g̃e

13 20.46 1.40 0.73
15 20.48 1.60 0.64
17 20.47 1.58 0.70
19 20.49 1.73 0.73
e 20.41 1.24 0.68
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observed in each measurement where there is no rele
event withz.g. t(q) in this range ofq is not determined by
a larger fluctuation thang, but by theg-order fluctuation.
This fact provides a way of estimatingg. In this range ofq,
the scaling exponentt(q) surely becomes linear onq ~Fig.
9!. Namely,g may be taken out from a linear fitting of th
scaling exponentt(q) in q.q(g) range. Although it may be
regarded meaningless to computet(q) in this range ofq
since statistical convergence of moments is not guarantee
contains the information on the fluctuation ofz5g, i.e., the
maximum fluctuation in measurement~cf. Sec. II!.

We compute theg value of t̃n and t̃ e, denotingg̃n and
g̃e. g̃n and g̃e are the quantities that characterize large flu
tuations of the energy flux and the energy dissipation rateg̃n

and g̃e are calculated as the slope of 5,q,6, whereq(g)
values for^uFnu t

q& and^e t
q& are about 4, which are estimate

by the way described in Sec. II with the time scaling ra
functionsS̃n and S̃e . The estimatedg̃n and g̃e are summa-
rized in Table II. Theg̃n’s of the energy fluxes are large
than g̃e of the energy dissipation rate. The energy flux e
hibits stronger fluctuation than the energy dissipation ra
This is a qualitative difference of the large fluctuation b
tween the energy flux and the energy dissipation rate.

Figure 11 shows the rate functionsS̃n( z̃) for the energy
flux andS̃e( z̃) for the energy dissipation rate for run 4. Co
cerning their right half ofz̃ regions, althoughS̃n of the en-
ergy flux andS̃e of the energy dissipation rate similarly de
pend onz̃, the rightmost point ofS̃e is slightly smaller than
that of S̃n’s. The fluctuation of the energy flux is relativel
larger than that of the energy dissipation rate. The diff
ences of fluctuation natures between the energy flux and
ergy dissipation rate are thus observed through the time s

h

r

FIG. 11. Rate functionsS̃n( z̃) of the finite time-averaged energ
flux in the inertial rangen513, 15, 17, 19, and the energy diss
pation rate for run 4.
4-10
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ing exponents and the corresponding rate functions.
What properties of energy transferring process do th

differences produce? The difference of temporal interm
tency between the energy flux and the energy dissipatio
observed in the time scaling exponents or the rate functio
and is particularly qualified by the parametersz̃n(0), t̃n9(0)

and g̃n . These differences of temporal intermittency are e
plained as follows. The energy dissipation rate is no
negative and always dissipates the energy. On the o
hand, the energy flux is not always positive and may ta
negative values, and negative energy flux represents th
verse energy cascade. Their long-time averages are al
the same because of the stationarity of the energy cas
process. Therefore, the energy flux may take larger fluc
tions than the energy dissipation rate. This fact makesg̃n

larger than g̃e . Furthermore, sinceu t̃n9(0)u and u t̃ e9(0)u
are related to the variances of scaling exponents and re
sents the fluctuation around the mean values, it is unders
that u t̃n9(0)u is larger thanu t̃ e9(0)u. The existence of the in
verse energy cascade in the inertial range makes the ine
range intermittency different from that in the dissipati
range.

Next, we consider the interrelation between the iner
range scaling and the time scaling of the energy flux. On
one hand, the inertial range scaling of the energy flux
defined as

uFnu
^uFnu&

5S kn

k0
D z

, ~4.6!

with an instantaneous scaling exponentz. On the other hand
the time scaling is written as

t21E
0

t

uFn~s!uds

^uFnu&
5S T

t D
z̃n

, ~4.7!

with a local scaling exponentz̃n for tn,t,T, wheretn is the
inner scale of the time scaling associated with thenth shell.
To discuss the connection betweenz and z̃n , we taket5tn
and approximate the integral in Eq.~4.7! as

1

tn
E

0

tn
uFn~s!uds;uFn~u!u, ~4.8!

with a timeu in between 0 andtn . Combining Eqs.~4.7! and
~4.8!, and comparing it with Eq.~4.6! yield

S T

tn
D z̃n

;S kn

k0
D z

. ~4.9!

We assume here thattn is estimated by the natural turn
over time
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tn;
1

knuunu
;

1

kn
2/3uFnu1/3

;kn
2(2/31z/3) , ~4.10!

where the relationuFnu;knuunu3 has been used. This implie
that tn is a fluctuating time associated withz. From Eqs.~4.9!
and ~4.10!, one obtains a relation

z̃n5
3z

21z
, ~4.11!

which states thatS̃n(3z/21z)5S(z). The minima S̃n5S

50 coincides withS̃n85S850, thus forq50,

z̃n~0!5
3z~0!

21z~0!
~4.12!

holds. Forq̃,q→` of z̃n(q̃) and z(q), S̃n(g̃n)5S(g), and
therefore

g̃n5
3g

21g
. ~4.13!

Using the observed valuesz(0)520.28 andg50.625, the
corresponding time exponents are calculated asz̃n(0)
520.48 andg̃n50.714. These values are compared to
observed data in Table II. They show a good agreement w
each other except forg̃15. The disagreement forg̃15 may be
due to the statistical inconvergence of data. Figure 12 sh

FIG. 12. z̃n(q) of time scaling and comparison withz(q) of the
inertial range scaling by the relation~4.11!.
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NAKAYAMA, WATANABE, AND FUJISAKA PHYSICAL REVIEW E 64 056304
z̃n(q) with 3z(q)/@21z(q)#. This ensures the validity of the
relation~4.11!. The energy flux time scaling is thus linked
the multifractal behavior in the inertial range.

V. CONCLUDING REMARKS

In the present paper, we have discussed the characte
tion of the anomalous scaling of turbulence using the la
deviation rate function.

We have computed the rate functionS(z) of the energy-
flux fluctuation for the inertial range of the GOY model, an
found the existence of the concave functionS(z). The
anomalous exponents so far studied@15# implied the distri-
bution of scaling exponents. This concavity property of t
rate function proves that the rate function and structu
function exponents, such asz(q) andt(q), are related with
each other by the Legendre transformation. Moreover,
rate function is found to be independent of the Reyno
number. For small fluctuation, the rate function is well a
proximated by the parabolic form, that is, near the minim
position ofS(z). On the other hand, for large fluctuation th
observedS(z) turns out to be in good agreement with th
defined by the She-Le´vêque model.

In the intermediate dissipation range, the viscous eff
changes the form of the rate function, and we conside
how the rate function is affected by the viscous effect in
intermediate dissipation range~IMDR!. The rate function
Sn(z) partially coincides with the inertial rangeS(z) in the
large fluctuation range ofz, which means that the inertia
range scaling partially holds even at the crossover s
where viscous effect starts to affect. The cutoff exponen
used to quantify the IMDR scaling and its cutoff scale d
pendence was studied. This result confirms that the IM
scaling is due to the multifractal characteristics in the iner
, J

l.

.

-
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range, in other words, to the fluctuation of viscous cut
scale. Although, so far, several studies tried to to verify
existence of the IMDR scaling by analyzing structures fun
tions, they could not clearly observe it. In contast to th
preceding analysis, the rate function succeeds in quantify
the IMDR scaling. Experimental study to clarify the exi
tence of the functionSn(z) near the dissipation scale in re
turbulent flow is highly desired.

Furthermore, we compared the intermittency statistics
the energy flux with those of the energy dissipation rate w
the time scaling exponents in order to compare the interm
tency characteristics in the inertial range and the dissipa
range. This manner to characterize the intermittency is ba
on the long-time correlations of fluctuation. The result r
veals the difference of intermittency between the energy fl
and the energy dissipation rate, which is not only for t
strong fluctuation but for weak fluctuation. This differen
reflects the difference of the inertial range and the dissipa
range dynamics, i.e., the difference of the energy transfer
dynamics.

The self similarity of intermittent energy cascade is w
characterized by the rate-functionS(z), and moreover the
intermediate dissipation range scaling is observed also by
rate function. The rate function is a direct measure of
distribution of the scaling exponent and fundamental to stu
the intermittency problem. It is highly desired to apply th
present rate-function approach to clarify the overall statis
of turbulent flows in experiments and observations.
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